If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+180x-100=0
a = 81; b = 180; c = -100;
Δ = b2-4ac
Δ = 1802-4·81·(-100)
Δ = 64800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64800}=\sqrt{32400*2}=\sqrt{32400}*\sqrt{2}=180\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-180\sqrt{2}}{2*81}=\frac{-180-180\sqrt{2}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+180\sqrt{2}}{2*81}=\frac{-180+180\sqrt{2}}{162} $
| —2x+13=–6x+5 | | 1/4x-1/7=7/8+1/2x | | 2(x+3)=x–5 | | -5(-3-2x)=-(-1+4x) | | x²+121=0 | | 7(2-x)=4(9-x) | | –6+7x=-9x+10 | | 4(5x+2)-8x=4x-5)-4 | | -3(x-4)=-5(x+2) | | -2x+13=-6x+5 | | -4x-4-x2=0 | | 0.9x+7=0.8x+8 | | 7x-7+11x-11=180 | | 4x+10=7x–14 | | z=16/5 | | 2x+8=20−x | | -4=2x^2+3x-19 | | x2-4x=5= | | (3y+7)(2y+4)=0 | | 8x-40+7x-5=180 | | 2x+2x-7=50 | | -5x+11x2-x3-25=0 | | 4(3x-6)1/4-12=0 | | 26.85-c=18.403 | | 2x+2x+5=70 | | F(x)=15x^2-2 | | 75=46-3x | | 950=-16t2+1700 | | x+2.33=5.86 | | 24-x=4x+12 | | x+2.33=76 | | x+2.23=5.76 |